If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+18k+14=0
a = 4; b = 18; c = +14;
Δ = b2-4ac
Δ = 182-4·4·14
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-10}{2*4}=\frac{-28}{8} =-3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+10}{2*4}=\frac{-8}{8} =-1 $
| 14-2(x+3)=5-2(x+10 | | Y=6x;(3,24) | | 31=6.2.y | | 9x2+6x+10=0 | | 38=2x-1+7x+3 | | 1=6p^2-p | | -75/8*n=32/9 | | t^2-8t+200=0 | | t^2+8t+200=0 | | 2x-5x-3=7+3x-2 | | -93/8n=35/9 | | -16x+2=4x+4 | | 15x-(8x-9)=51 | | v+3.8=8.24 | | x-7.4=1.51 | | 3(x-2)-4(x-1)=2(4-x)-7 | | 8x-35+6x+5=180 | | y=-3(-3/5)+2 | | 3X+21=6x+3 | | y+5.1=8.83 | | 9x-3x+x=-5 | | 141-2x=127 | | (X+2)^2=9x | | 50=13y-3y | | 30+7x-0.3x^2=0 | | 3y-9=90 | | 6x=x^2+5 | | 150=9x+16 | | 1-4w=7 | | 3x+x=4-12 | | 7x=x^2+4x | | 1/5j=5 |